Skip to main content

Write a java program for multiplying two matrices and print the product for the same | VCMIT

Two matrices and print the product for the same.


INPUT

public class Matrix1{
public static void main(String args[]){   
int a[][]={{1,1,1},{2,2,2},{3,3,3}}; 
int b[][]={{1,1,1},{2,2,2},{3,3,3}};     
int c[][]=new int[3][3];   
for(int i=0;i<3;i++){ 
for(int j=0;j<3;j++){ 
c[i][j]=0;   
for(int k=0;k<3;k++)   
{   
c[i][j]+=a[i][k]*b[k][j];   
}
System.out.print(c[i][j]+" "); 
}
System.out.println(); 

}}

OUTPUT



Comments

// Assuming you have fetched the search query and blog posts // Function to calculate the similarity score between search query and post function calculateSimilarity(query, post) { // You can use a similarity algorithm here, like TF-IDF or cosine similarity // Return a score that represents how relevant the post is to the query } // Function to suggest relevant posts based on search query function suggestPosts(searchQuery, blogPosts) { const suggestedPosts = []; for (const post of blogPosts) { const similarityScore = calculateSimilarity(searchQuery, post); if (similarityScore > 0) { suggestedPosts.push({ post, similarityScore }); } } // Sort the suggested posts based on similarity score suggestedPosts.sort((a, b) => b.similarityScore - a.similarityScore); // Return the sorted list of suggested posts return suggestedPosts.map(item => item.post); } // Example usage const searchQuery = "your search query"; const allBlogPosts = [/* array of your blog posts */]; const suggestedPosts = suggestPosts(searchQuery, allBlogPosts); // Now you can display suggestedPosts to the user